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Supplementary Figure 1. Estimation of biases associated with the SLRH method. Both 
panels compare the empirical coverage histogram at heterozygous SNVs (blue curve) to 
one obtained from an idealized coverage distribution that exhibits no bias (red curve). 
The top panel shows the typical coverage by short reads; the ideal distribution was 
chosen to be free of internal biases. The bottom panel shows the typical coverage by long 
fragments; the ideal distribution exhibits no external biases. 
  



 

 
 
 
Supplementary Figure 2: Genome browser view of the phased HLA-C gene. Colored 
regions indicate heterozygous SNVs. Long fragments are connected at their overlapping 
heterozygous positions (middle track) into haplotype blocks (bottom track). Determining 
the phase of HLA genes has applications in host-donor matching for organ 
transplantation. 
  



 
 

 
 
Supplementary Figure 3: Haplotyping results at different accuracy thresholds from a 
single 30 Gbp sequencing library. Long statistically constructed haplotype contigs are cut 
at positions where confidence scores are below a certain threshold, forming shorter but 
more accurate haplotype blocks. We evaluate the completeness (top panels) and the 
accuracy (bottom panels) of the smaller blocks at a series of error thresholds. The blocks 
are evaluated only over SNVs. 
  



 
 
 

 
Supplementary Figure 4. Overlap of DMRs with different types of genomic regions. 
Blue bars indicate the proportions of DMRs overlapping with each type of genomic 
regions; red bars indicate the proportions of each type of genomics region in the human 
genome. 
 
  



 
 
Supplementary Figure 5. Genome browser view of a typical DMR located at an 
intergenic region. The DMR resides on a DNase hypersensitive site and overlaps with 
many TF binding sites.  



Supplementary Table 1: Comparison of SLRH to existing dilution haplotyping 
technologies. SLRH phases substantially more SNVs at a high level of accuracy than 
existing technologies while using substantially less sequencing data. 
 
 SLRH Kaper et al.2 LFR3 Kitzman et al.  
Sample1 NA12878 NA12878 NA12877 NA20846 
No. dilution 
aliquots used 

384-768 192 384-768 116 

Fragment size 8-9 Kbp (N50) 10-20 Kbp 
(average) 

64-82 Kbp (N50) ~37 Kbp 

Amplification 
method 

Long-range PCR MDA MDA Fosmid cloning 

Sequencing 
library 
preparation 
method 

Nextera v.2 Nextera v.2 CoRE and 
adapter ligation 

Nextera v.1 

NGS Platform Illumina HiSeq Illumina HiSeq Complete 
Genomics 

Illumina GAIIx 

Library prep. 
time 

2 days (6 hours 
hands on) 

1 day 1 day 7 days 

Bases 
sequenced (in 
addition to 
WGS) 

30-60 Gbp 203-409 Gbp 238-496 Gbp 110 Gbp 

% SNVs phased 99% 97% 92-97% 94% 
N50 of 
haplotype 
blocks 

450-560 Kbp 358 Kbp 530-600 Kbp 386 Kbp 

Long switch 
accuracy2 

99.90-99.92% 99.4% 2.2% of blocks 
containing switch 
errors3 

n/a 

Short switch 
accuracy 

99.87-99.91% 99.7% 99.95-99.998% 99.7% 
concordance 
with (D’>0.9) 
HapMap SNPs 

Phasing 
algorithm 

Custom pipeline 
(Prism) 

RefHap Custom 
Complete 
Genomics 
pipeline 

HapCut 

 
 
 
 
 
 
 
 
                                                             
1 We report results for one representative sample. All the papers except Kitzman et al. sequenced 
2 In the Kaper et al. paper, “long switch accuracy” is referred to as “switch error rate”; “short 
switch accuracy is referred to as “accuracy considering switch errors”.!
3!The long switch accuracy was not assessed within the LFR publication.!



Supplementary Table 2: Sample statistics. 
 
 NA12878 NA12891 NA12892 

Genomic variants  3,760,133   3,742,625   3,787,927  
SNVs  3,167,197   3,169,053   3,197,249  
Indels  592,936   573,572   590,678  
Heterozygous variants  2,249,071   2,220,244   2,305,926  
Heterozygous SNVs  1,904,884   1,884,674   1,959,083  
Heterozygous Indels  344,187   335,570   346,843  

 
 
Supplementary Table 3: Library statistics before quality control filtering. 
 

Library Number of 
reads  

Number of 
fragments 

Total length of 
fragments 

Coverage with 
fragments 

NA12878-1  151,065,425   1,668,936   14,347,030,961  4.78 
NA12878-2  152,045,561   1,694,672   14,445,637,123  4.82 
NA12891-1  215,281,988   2,659,020   18,231,656,819  6.08 
NA12891-2  224,946,933   3,037,427   22,047,999,725  7.35 
NA12892-1  143,140,286   2,144,677   14,946,458,609  4.98 
NA12892-2  191,480,706   2,714,314   21,319,831,141  7.11 

 
 
Supplementary Table 4: Library statistics after quality control filtering. About 10-20% 
of fragments are discarded due to quality issues. The main reasons for discarding 
fragments are: insufficient internal coverage, a large number of positions with low q-
scores, evidence of two different alleles at a heterozygous position in the same fragment, 
and a fragment length that falls within the top two percentiles. 
 

Library Number of 
fragments 

Total length of 
fragments 

Coverage with 
fragments 

N50 fragment 
length 

NA12878-1  1,415,940   12,216,607,477  4.07  8,925  
NA12878-2  1,448,557   12,315,617,298  4.16  8,918  
NA12891-1  2,181,780   15,029,824,324  5.02  7,950  
NA12891-2  2,451,467   18,441,004,225  6.15  9,387  
NA12892-1  1,771,595   12,417,265,735  4.14  7,987  
NA12892-2  2,239,054   17,950,601,115  5.99  10,206  

 
 
 
 
 



Supplementary Table 5: Phasing results for sample NA12878 at multiple thresholds 
measured over SNVs only. By adjusting the quality threshold, we can either obtain very 
long 1.1 Mbp haplotype contigs, or we can recover the extremely accurate blocks that do 
not involve statistical phasing. At both ends, blocks contain on average less than one long 
switch per Mbp. 
 

Threshold N50 (bp) 
Percent 
phased 

Variant N50 
(variants) 

Long switches 
per Mbp 

Long switch 
accuracy 

Short switch 
accuracy 

0.5  1,106,509  99.23% 909 0.85 99.86% 99.87% 

0.6  754,449  99.07% 657 0.64 99.89% 99.91% 

0.7  684,268  99.05% 609 0.59 99.90% 99.91% 

0.8  629,507  99.03% 565 0.54 99.91% 99.91% 

0.9  563,801  99.00% 505 0.47 99.92% 99.91% 

0.95  498,265  98.96% 455 0.41 99.93% 99.91% 

0.99  393,510  98.85% 368 0.31 99.95% 99.92% 

0.999  292,817  98.63% 280 0.27 99.96% 99.92% 

0.9999  134,142  96.90% 153 0.26 99.96% 99.93% 
 
 
Supplementary Table 6: Phasing results for sample NA12878 at multiple thresholds 
measured over both SNVs and indels. By adjusting the quality threshold, we can either 
obtain very long 1.1 Mbp haplotype contigs, or we can recover the extremely accurate 
blocks that do not involve statistical phasing. At both ends, blocks contain on average 
less than one long switch per Mbp. 
 

Threshold N50 (bp) 
Percent 
phased 

Variant N50 
(variants) 

Long switches 
per Mbp 

Long switch 
accuracy 

Short switch 
accuracy 

0.5  1,100,074  94.30% 1006 1.02 99.85% 99.71% 

0.6  750,102  94.16% 738 0.80 99.89% 99.74% 

0.7  683,003  94.15% 685 0.74 99.89% 99.74% 

0.8  628,233  94.13% 634 0.68 99.90% 99.75% 

0.9  560,936  94.10% 566 0.62 99.91% 99.75% 

0.95  496,623  94.07% 511 0.56 99.92% 99.75% 

0.99  391,275  93.99% 412 0.45 99.94% 99.75% 

0.999  290,660  93.81% 315 0.41 99.94% 99.76% 

0.9999  132,146  92.43% 171 0.44 99.94% 99.76% 
 
 
 
 
 
 
 



Supplementary Table 7: Overview of performance at the 0.9 accuracy threshold over 
SNVs only. We evaluate haplotype blocks obtained by introducing cuts in the raw 
statistically assembled haplotype contigs whenever a confidence score is below 0.9.  
 
 NA12878 NA12891 NA12892 

Fragment N50 (bp)  8,922   8,294   8,637  
Number of fragments  2,868,739   4,633,247   4,004,932  
Number of local blocks  304,023   216,816   294,805  
Percent phased locally 93.43% 97.02% 94.16% 
N50 of local blocks (bp)  65,843   80,388   71,359  
N50 of global blocks (bp)  563,801   647,599   578,217  
Percent phased globally 99.00% 99.25% 98.89% 
Long switches per Mbp 0.47 0.68 0.81 
Long switch accuracy 99.92% 99.89% 99.87% 
Short switch accuracy 99.91% 99.84% 99.79% 
Absolute accuracy 95.95% 93.05% 93.50% 

 
 
Supplementary Table 8: Overview of performance at the 0.9 accuracy threshold over 
both SNVs and indels. We evaluate haplotype blocks obtained by introducing cuts in the 
raw statistically assembled haplotype contigs whenever a confidence score is below 0.9. 
Compared to results taken over SNVs only, the biggest change is an increase in short 
switching events. 
 
 NA12878 NA12891 NA12892 

Fragment N50 (bp)  8,922   8,294   8,637  
Number of fragments  2,868,739   4,633,247   4,004,932  
Number of local blocks  304,023   216,816   294,805  
Percent phased locally 88.59% 92.19% 89.43% 
N50 of local blocks (bp)  65,843   80,388   71,359  
N50 of global blocks (bp)  560,936   643,067   574,192  
Percent phased globally 94.10% 94.61% 94.09% 
Long switches per Mbp 0.62 0.81 0.99 
Long switch accuracy 99.91% 99.88% 99.86% 
Short switch accuracy 99.75% 99.71% 99.64% 
Absolute accuracy 95.80% 92.93% 93.33% 

 
 
 
 



Supplementary Table 9: Percent of genes and novel variants phased. All novel variants 
were phased at the local stage, therefore we cannot improve phasing performance by 
increasing the accuracy threshold as we did above. 
 
 Novel variants 

phased 
Novel variant switch 
accuracy 

Percent of genes 
phased 

NA12878 73.10% 96.25% 89.78% 
NA12891 75.86% 97.75% 88.86% 
NA12892 73.16% 98.16% 88.47% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 10: Phasing performance over SNVs from 30 Gbp of sequencing 
(0.9 accuracy threshold). We ran the bioinformatics pipeline independently on a single 
phasing library for each sample. The resulting blocks were almost as accurate and about 
100 Kbp shorter than when two phasing libraries were used. 
 
 NA12878 (lib. 1) NA12891 (lib. 1) NA12892 (lib. 1) 

Fragment N50  8,925   7,950   7,987  
Number of fragments  1,415,940   2,187,579  1,771,595   
Number of local blocks  459,759   306,137   487,400  
Percent phased locally 86.79% 93.37% 86.33% 
N50 of local blocks  37,521   43,516   31,174  
N50 of global blocks  449,802   506,575   423,854  
Percent phased globally 98.54% 98.89% 98.20% 
Long switches per mega base 0.57 0.70 0.78 
Long switch accuracy 99.90% 99.88% 99.87% 
Short switch accuracy 99.88% 99.79% 99.78% 
Absolute accuracy 95.70% 93.51% 93.42% 

 
Supplementary Table 11: Phasing performance over both SNVs and indels using 30 
Gbp of sequencing (0.9 accuracy threshold). We ran the bioinformatics pipeline 
independently on a single phasing library for each sample. The resulting blocks were 
almost as accurate and about 100 Kbp shorter than when two phasing libraries were used. 
 
  NA12878 (lib. 1) NA12891 (lib. 1) NA12892 (lib. 1) 

Fragment N50  8,925   7,950   7,984  
Number of fragments  1,415,940   2,187,579   1,778,945  
Number of local blocks  459,759   306,137   487,400  
Percent phased locally 82.47% 89.12% 82.34% 
N50 of local blocks  37,521   43,516   31,174  
N50 of global blocks  448,240   504,180   420,869  
Percent phased globally 93.63% 94.53% 93.48% 
Long switches per mega base 0.79 0.77 1.03 
Long switch accuracy 99.89% 99.89% 99.86% 
Short switch accuracy 99.61% 99.55% 99.50% 
Absolute accuracy 95.45% 93.39% 93.13% 

 
 
 
 
 



Supplementary Table 12: Evaluation of two replicate libraries for sample NA12878 
using 30 Gbp of sequencing. The two replicates are highly concordant and exhibit a small 
loss in performance compared to when two libraries are used. 
 
 NA12878 (#1 + #2) NA12878 (#1) NA12878 (#2) 

Fragment N50  8,922   8,925   8,918  
Number of fragments  2,868,739   1,415,940   1,448,557  
Number of local blocks  304,023   459,759   484,632  
Percent phased locally 93.43% 86.79% 85.69% 
N50 of local blocks  65,843   37,521   37,902  
N50 of global blocks  563,801   449,802   449,627  
Percent phased globally 99.00% 98.54% 98.50% 
Long switches per mega base 0.47 0.57 0.55 
Long switch accuracy 99.92% 99.90% 99.91% 
Short switch accuracy 99.91% 99.88% 99.87% 

 
Supplementary Table 13: Statistical phasing accuracy for sample NA12878 at a 
confidence threshold of 0.9. Switch events were separated into three categories, 
depending on whether they occurred between two locally phased blocks of two SNVs or 
more, between two isolated SNVs, or between a block and an isolated SNV. Accuracies 
were calculated between adjacent blocks phased relative to each other with a confidence 
score of 0.9 or more. 
 
 Accuracy 
Switch accuracy between two local blocks  97.3%  
Switch accuracy between a local block and an isolated SNV  98.4%  
Switch accuracy between two adjacent isolated SNVs 99.4%  
Total statistical switch accuracy 98.8% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 14: Phasing performance on a simulated phasing library 
(equivalent to 30Gbp of input reads) with no sequencing or PCR errors. Results are 
presented at a 0.9 accuracy threshold over SNVs only. 
 
 NA12878 
Fragment N50 (bp) 7,000 bp 
Percent phased locally 97.94% 
N50 of local blocks (bp) 61,578 bp 
N50 of global blocks (bp)  496,240 bp 
Percent phased globally 99.38% 
Long switches per Mbp 0.64 
Long switch accuracy 99.89% 
Short switch accuracy 99.98% 
Absolute accuracy 95.65% 
 
 
Supplementary Table 15: Phasing performance on a simulated phasing library 
(equivalent to 30Gbp of input reads) with no sequencing or PCR errors. Results are 
presented at a 0.9 accuracy threshold over both SNVs and indels. 
 
 NA12878 
Fragment N50 (bp) 7,000 bp 
Percent phased locally 96.23% 
N50 of local blocks (bp) 61,578 bp 
N50 of global blocks (bp) 495,310 bp 
Percent phased globally 97.59% 
Long switches per Mbp 0.72 
Long switch accuracy 99.90% 
Short switch accuracy 99.98% 
Absolute accuracy 95.64% 
  



Materials and Methods:  
Preparation of a Phasing Library 
To prepare a phasing library, 1 microgram of genomic DNA was sheared using a Covaris 
g-Tube (3,200xg for 2x1 min).  The 8-10Kb DNA fragment range was isolated from a 
0.8% Clonewell E-gel (Life Technologies, Grand Island, NY, USA) using the QIAquick 
Gel Purification Kit (Qiagen).  Isolated DNA fragment ends were blunted, 5’-
phosphorylated, A-tailed, and ligated to dT-tailed adapters (see below) using the 
NEBNext Quick DNA Library Prep Master Mix Set for 454 (New England Biolabs), 
following the manufacturer’s instructions.   
 
Adapter (Forward): 5’-
CATCTCATCCCTGCGTGTCTCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT
ACGCTTGCAT-3’ 
 
Adapter (Reverse):  5’-(Phos)-
TGCAAGCGTACTGTCTCTTATACACATCTGACGCTGCCGACGAGACACGCAG
GGATGAGATGG-3’ 
 
Excess adapters and enzymes were removed using AMPure XP SPRI beads (Beckman 
Coulter Genomics, Danvers, MA, USA), and the concentration of amplifiable 8-10kb 
DNA fragments was determined by qPCR relative to 10Kb fragments of known 
concentration.   
 
The 8-10Kb fragments were then diluted to 3000-6000 amplifiable molecules per well of 
a 384-well plate, and PCR-amplified for 13-15 cycles (94°C 15 sec, 65°C for 9 min) 
using adapter-specific primers (5’-CCATCTCATCCCTGCGTGTCTCG-3’) and 
LongAmp polymerase (New England Biolabs).  The average number of molecules within 
each well was kept around 3000-6000 to reduce the complexity of unique DNA 
sequences, which is important to aid fragment calling and avoid cross-phasing of 
fragments.  Each resulting pool of amplified molecules was Tagmented using the Nextera 
DNA transposase (Illumina), end-repaired (72°C for 4 min), and sequencing adapters 
(Nextera Index Kit, Illumina) with barcodes unique to each well were incorporated 
through limited cycle PCR (6 cycles of 94°C 15 sec, 65°C for 4 min).  The resulting sub-
libraries were pooled together, purified using the QIAquick PCR Purification Kit 
(Qiagen), size selected by excising the 400-800 bp fragments from 2% SYBR Safe E-gels 
(Life Technologies) using the QIAquick Gel Extraction Kit (Qiagen), further amplified 
using PhusionGC polymerase (New England Biolabs) with Primer1 and Primer2 from the 
Nextera DNA Sample Prep Kit (Illumina®-Compatible) (EpiCentre), and purified using 
the Zymo Clean and Concentrate Kit-5 (Zymo). Sequencing libraries were quantitated 
using by qPCR (KAPA) and sequenced on Illumina HiSeq2000 sequencers using a 
2x100bp plus single 8bp index read recipe. 
DNA for HapMap samples NA12878, NA12891, NA12891 was obtained from 
lymphoblastoid cell lines (GM12878, GM12891, GM12892) available from the Coriell 
Institute for Medical Research. 



The samples were whole-genome sequenced to a depth of 50X on an Illumina HiSeq 
2000 instrument (Supp. Table 2) as part of the Illumina Platinum Genomes Project4. 
These requirements are comparable to those of earlier publications1-3. 
 
Comparison to the method of Voskoboynik et al.5 
The above protocol adapts the LR-Seq technology that has been recently used to 
assemble the genome of B. schlosseri5. Our method has some differences to LR-Seq. LR-
Seq, about 300 fragments wells are placed per well, compared to 5000 for SLRH. The 
individual fragments in each well are sequenced to a high depth in LR-Seq (50X, in order 
to perform de-novo subassembly); we sequence the fragments to a depth of 1-2X. 

Additionally, the phasing protocol has been streamlined relative to LR-Seq in several 
ways. The most important modifications include: the elimination of two intermediary 
DNA purification steps; using the Nextera v.2 library preparation protocol; the addition 
of end-markers at the end of fragments; performing the initial fragmentation in a G-Tube, 
as opposed to using a HydroShear.  

Assessment of PCR bias 
 
To assess biases introduced by PCR, we compared the empirical read coverage at 
heterozygous SNVs to one obtained from sampling a uniform coverage distribution. 
Although we observe biases, they only affect a small number of SNVs. 
 
We focus our attention on two types of coverage: internal and external. Internal coverage 
refers to the distribution of short reads within a typical long fragment. External coverage 
refers to the distribution of long fragments across the whole genome. Unevenness in each 
type of coverage is accordingly referred to as internal or external bias.  
 
In Supplementary Figure 5, we plot the histogram of the internal and external coverages 
at heterozygous SNVs on chromosome 22. We derive these plots from data from the two 
phasing libraries of HapMap sample NA12878.  
 
The top panel compares the empirical coverage histogram at heterozygous SNVs (blue 
curve) to one obtained from an idealized coverage distribution that exhibits no internal 
bias (red curve). The ideal coverage !! (red curve) at a heterozygous position ! is the sum 
!!"!  of the coverages !!" within each long fragment ! that spans !; the !!" were obtained 

by simulating a uniform internal coverage within long fragment !. We carried out this 
simulation by sampling each !!" independently from a binomial distribution with 
parameters ! = 2.03 ∗ !!/101 and ! = 101/!!, where !! is the length of fragment !, 101 
is the length of a short read, and 2.03 is the empirically derived average coverage of long 
fragments by short reads. In other words, the ideal curve assumes that short reads are 
distributed uniformly within each long fragment, but the long fragments are distributed 
across the genome in the same way as in the empirical data; this isolates the effects of 
internal bias. 
 



The bottom panel compares the histogram of the empirical coverage by long fragments at 
heterozygous SNVs (blue curve) to an idealized distribution of long fragments that 
exhibits no external biases. The blue curve represents the typical number of long 
fragments that span a heterozygous position; a heterozygous SNV is said to be spanned 
by a long fragment if it falls between the start and end position of that fragment. The 
ideal coverage curve was derived under the assumption that long reads are distributed 
uniformly at random across the genome. We modeled this assumption by sampling a 
coverage !! at every heterozygous position ! from a binomial distribution with parameters 
! = 11.12 ∗ 5000/! and ! = 5000/!, where 5000 was taken to be the length of a 
typical long fragment, ! was the length of the reference sequence for chromosome 22, 
and 11.12 was the coverage of the chromosome by long fragments observed within the 
real data. 
 
In the top panel, we observe more mass on the left of the blue histogram relative to the 
red histogram, indicating that many positions have less coverage than one would expect 
in the ideal case. However, there are only 302 more uncovered positions in the real data 
than in the ideal data (1.0% of the heterozygous positions on chromosome 22); thus even 
at a low internal coverage of 2x, relatively few positions are impossible to phase due to 
internal bias problems. 
 
In the bottom panel, 800 heterozygous positions (2.9% of all positions) cannot be phased 
because of external bias; in the ideal case, there are no uncovered positions. This 
difference is larger than in the top panel, suggesting that the biases inherent to our 
method cause certain fragments not to amplify at all in certain regions of the genome, as 
opposed to some parts of a fragment not being amplified. 
 
However, the above statistics suggest that only 4% fewer SNVs (relative to the ideal 
setting) cannot be phased by a purely molecular approach due to various biases. 
Interestingly, our local phasing rate of 93.4% (Supplementary Table 7) comes close to 
this upper bound of 96%. 
 
Finally, we tested the impact of sequencing and PCR errors on the accuracy of our 
assembly by generating another simulated dataset for sample NA12878. We sampled 
7Kbp-long fragments uniformly at random from the trio-phased genome of NA12878 
(with each fragment coming from a single chromosome), such as to cover the genome at 
a depth of 6X (roughly the equivalent of one 30Gbp phasing library). Each long fragment 
was sampled with short reads at an internal depth of 2X, and each short read was 
generated from the trio-phased VCF of NA12878 with an error probability of 10-5. This 
dataset was meant to represent an ideal input containing essentially no sequencing or 
PCR errors. 
 
We ran our phasing pipeline over this dataset; results are presented in Supplementary 
Tables 14-15. Overall, we noticed an improvement in phasing quality. Substantially more 
variants were phased at the local stage into longer blocks. The subsequent global stage 
was also more complete, with an N50 length longer by about 100 Kbp, and with about 
0.4% more SNV phased. 



 
However, the difference in quality of these haplotypes was less significant. Long switch 
accuracy was similar in both cases, and actually 0.02% lower on the simulated dataset 
(this is understandable, since the haplotype blocks were substantially longer and 
contained more variants). The greatest improvement was found in short switch accuracy, 
suggesting that sequencing errors and PCR artifacts mainly introduce point errors at 
individual variants without significantly affecting the long-range phase information. 

Computational Data Analysis 
 
Sequencing reads were aligned to the genome using the BWA aligner. Within each set 
sharing the same well-specific barcode adapter, the reads were clustered into groups 
separated from each other by at least 2 Kbp. With high probability, reads within the same 
groups belong to the same long fragment.  See Supplementary Table 3 for a summary of 
libraries sequenced. 
 
Within each fragment, genomic variants were determined at set of heterozygous positions 
derived from an existing list of variants in VCF format. VCF files were obtained from an 
earlier whole-genome sequencing of the samples to a depth of 50X 4 on an Illumina 
HiSeq 2000 instrument (Supp. Table 2). 
 
Once heterozygous variants in each fragment were determined, fragments were passed 
through quality control (Supp. Table 4). The reasons for discarding fragments were: 
insufficient internal coverage, a large number of positions with low q-scores, evidence of 
two different alleles at a heterozygous position in the same fragment, and a fragment 
length that fell within the top two percentiles. 
 
Genotypes within a called fragment were sometimes inconsistent with the input 
genotyping; this occurred in one of two scenarios. If a position exhibited sufficient 
evidence (p<0.01) for two alleles, the entire fragment was discarded. This was done to 
detect and remove collisions between fragments in the same well; it was found to 
substantially increase the switch accuracy. About 1% of fragments were discarded in this 
manner. In the second scenario, only one allele was present at every position and the 
fragment was used for phasing. However, inconsistent positions were marked as part of 
the final output. About 1.4% of positions per library were marked as inconsistent. 
 
Local phasing 
 
First, at the local stage, long fragments were connected at their heterozygous SNVs using 
a dynamic programming algorithm. Dynamic programming is a technique that consists in 
finding the solution by first solving a set of smaller subproblems and then combining 
their solutions. Alternative algorithms for local phasing include RefHap6 and HapCut7; 
they could probably be used to replace our method. 
 
Our dynamic programming algorithm takes the approach of solving ! subproblems 
(where ! is the number of positions to phase), where each subproblem ! (with 



1 ≤ ! ≤ !) consists in finding the optimal haplotypes for our data, assuming that the 
data is truncated to the first ! positions.  
 
For ! = 1, that task is obviously easy to perform. For ! ≥ 1, we need to make the crucial 
observation that the optimal haplotypes up to position ! consist of some assignment to 
parental chromosomes of the long fragments that span position ! (call that assignment !), 
as well as of the best haplotypes over positions 1,… , ! − 1 under the conditions that the 
fragments that span both ! and ! − 1 are assigned consistently (i.e., to the same parental 
chromosome). Let ! denote an assignment of long reads to chromosomes at position 
! − 1 and note that if we store the optimal solution over 1,… , ! − 1 for every assignment 
!, then we can compute a solution for position ! by simply enumerating all assignments 
! that are consistent with !. Because our depth is relatively low, there are typically about 
ten fragments that span position ! − 1, and we can enumerate all possible assignments of 
these reads efficiently.  
 
After repeatedly solving the subproblem for every !, we arrive at the full solution when 
! = !. 
 
More formally, our algorithm is based on repeatedly solving the dynamic programming 
recursion 

! !, ℎ! ,!! = max!!!!max!!∼!!!!
!: ! ∈ !

log!(! ! |ℎ! !! ! ) +![! − 1, ℎ!!!,!!!!]  

where ! !, ℎ! ,!!  is the log-likelihood of the best haplotype blocks given that the data is 
truncated to heterozygous positions 1 to k, that the haplotype at position k is ℎ! ∈
{0 1, 1 0}, and that the fragments at position k are mapped to the two parental 
chromosomes indexed by {0,1} using the function !!: ! ! ∈ ! → {0,1}. In the last 
definition, the index i denotes fragments, and the notation ! ∈ ! means that fragment i 
covers position k. The value !(! ! |ℎ! !! !  is the probability of observing the variant 
! !  located at heterozygous position k in fragment i given that the fragment came from 
the parental chromosome !! ! , whose true allele is therefore taken to be ℎ! !! ! . This 
probability is directly derived from the sequencing reads’ q-scores. The expression that is 
maximized equals to the score of a particular assignment of fragments to parental 
chromosomes and of haplotypes at these alleles. It is maximized over the two possible 
haplotypes at the previous position ℎ!!!, and over all possible assignments of fragments 
to chromosomes at the previous position !!!! that are “consistent” with the current 
assignment !!. We enforce “consistency”, in the sense that if a fragment spans positions 
k and k-1, then both !!!! and !! must assign it to the same chromosome. This is denoted 
by !!!! ∼ !!. 
 
The algorithm computes the ! !, ℎ! ,!!  for all heterozygous positions ! = 1,… ,!, and 
stores the haplotypes ℎ!,… , ℎ! associated with each ! !, ℎ! ,!! . The final solution 
max!!max!!! !, ℎ!,!!  corresponds to the assignment that maximizes the log-
likelihood of the data log!(! ! |ℎ! !! ! )!:!∈!

!
!!! . Here is a pseudocode 

definition: 



 
• Compute ! 1, ℎ!,!!  for all ℎ!,!!. 
• For position ! ∈ {2,… ,!}: 

o For haplotype ℎ! ∈ {0 1,1 0}: 
! For all assignments !!: 

• Compute ![!, ℎ! ,!!] using the dynamic programming 
recursion. 

• Return max!!max!!! !, ℎ!,!!  
 
The running time of the above algorithm is linear in the number of heterozygous 
positions, and exponential in the genomic coverage (more precisely, in our 
implementation, complexity grows on the order of ! 2!"#$%&'$ ). Because the genome is 
typically covered to a depth of ~8X, the exponential running time factor is not a problem 
in practice. At positions where the coverage is extremely high by chance, we discard the 
least informative fragments without noticeable loss in performance. 
 
Global phasing 
 
The end results of the local stage are short and accurate haplotype blocks whose 
characteristics are summarized in Supplementary Tables 7, 8. Next, at the global stage, 
these local blocks are phased with respect to each other using a statistical phasing 
algorithm to form long haplotype contigs. Most blocks are assigned a phase at this stage, 
with the exception of a small number that are most often comprised of a single novel 
heterozygous variant. 
 
We defer the detailed definition of the statistical phasing algorithm to a supplementary 
document. In brief, it extends the Li and Stephens8 model used in statistical packages 
such as IMPUTE29 or SHAPE-IT10 to accept prior local phasing information. It uses a 
reference panel of phased haplotypes and a genetic map of the genome. This data was 
obtained from the latest version of the IMPUTE2 statistical analysis package. Traditional 
statistical algorithms typically have low accuracy; our method leverages locally-derived 
haplotype information to greatly reduce the number of possible haplotypes in any region, 
and thus improves the phasing accuracy (Supplementary Table 13).  
 
Although in this work we ran Prism on European samples, the program also handles 
subjects of other ancestries, as well as subjects of mixed origins. Prism handles admixed 
populations in the same way as IMPUTE2, i.e. it phases the subject across small 
overlapping genomic regions of 100Kbp-1.5Mbp (the exact size affects the results very 
little), and then merges the results of each region. Within a particular region, it selects a 
reference sub-panel of K individuals that best describe the subject. Therefore, if the 
subject has a different ancestral origin within a particular region, the method will select 
the set of haplotypes from the appropriate population. In the case of sample NA12878, 
we found that using a population of mixed ethnicities produced similar results to ones 
obtained from a strictly European panel with a slightly improved global phasing accuracy 
of 94.73% (up from 94.69%), suggesting that the sample was well described by reference 
panel members of European ancestry. In more admixed samples, we expect to see a drop 



in statistical phasing accuracy when using only a single ethnicity in the panel; we 
therefore suggest using the default setting and choosing the closest samples of each 
ethnicity within the entire window. For a more thorough discussion of this topic, we refer 
the reader to the IMPUTE 2 publication9. 
 
The global phasing stage produces long haplotype contigs as well as confidence scores 
that indicate the likelihood of making a switch error between two local blocks. 
Depending on the application, haplotype blocks can be constructed from the long contigs 
by introducing breaks whenever the confidence score between two statistically phased 
blocks is too low. One can obtain an estimate for the minimum accuracy over a region by 
multiplying the confidence scores. If two haplotypes appear to be equally likely, Prism 
will pick one at random, but will assign that haplotype a low score. We found the number 
of positions with such low scores to be on the order of 2-3%. 
 
Evaluation criteria 
 
Performance was assessed using a series of metrics: the N50 length of phased blocks, the 
percent of variants phased, as well as long and short switch accuracies and associated 
rates. 
 
The N50 length of a set of haplotype blocks is defined as the length n at which half of the 
total bases in all the blocks are in blocks of length n or longer. We defined the length of a 
haplotype block to be the number of bases between the first and the last heterozygous 
variant in the block. The percent of variants phased was defined as the number of 
heterozygous variants in haplotype blocks that contain at least two heterozygous variants 
in total.  
 
Accuracy was assessed in terms of the concept of a switch. A switch is said to occur at a 
heterozygous variant j if the mother's and the father's variants are inverted with respect to 
heterozygous variant j-1. For example, a switch occurs at heterozygous variant j if the 
allele on haplotype 0 at j is known to come from the mother and the allele on haplotype 1 
is known to come from the father, whereas at j-1 it's the opposite: the allele on haplotype 
0 comes from the father and the allele on haplotype 1 comes from the mother. 
 
We differentiate two types of switches. A long switch (also referred to as a switch event) 
happens when the mother's and the father's variants are inverted for more than one 
position (e.g. MMFF). A short switch is said to occur when the parental variants are 
inverted for a single position (e.g. MMFM). 
In this study, we focus our analysis on long switches. Such errors are more important as 
they substantially alter the haplotypes within a region (e.g. within a gene). They are also 
the most common type of error produced by the statistical phasing that SLRH uses. 
Finally, they are much easier to measure, as false short switches can be caused by 
genotyping errors in trio-based phasing. 
 
We assess errors using long switch accuracy, which is defined as one minus the number 
of long switch events divided by the number of locations where switches can be 



measured. Short switch accuracy is defined as one minus the number of positions with 
short switches divided by the number of heterozygous genomic variants. The rate of long 
switch events was defined as S * (1 – A) / 3200, where A is the long switch accuracy on 
SNVs, S is the number of heterozygous SNVs in the subject, and 3200 is the approximate 
length of a human genome in Mbp. Finally, we defined the absolute accuracy of a block 
as maximum of (a) the number of variants truly coming from the father and (b) the 
number of variants truly coming from the mother, divided by the number of variants 
whose provenance could be assessed (i.e. heterozygous variants that are not heterozygous 
in both the father and in the mother). Thus, if a haplotype block has alleles 00011000, 
and the true parental alleles are 00000000 and 11111111, then the absolute accuracy for 
this block is 6/8. The absolute accuracy we report is taken over all the blocks. 
 
We generated a list of genes from the UCSC known genes database by performing a set 
union of the genomic regions associated with all the transcripts of a particular gene. We 
considered a gene to be phased if it did not contain the start of a haplotype block. 
 
Analysis of haplotyping performance over rare variants 
 
The performance of SLRH over rare variants was noticeably lower than over common 
ones, both in terms of phasing rate and accuracy. To better understand the reason behind 
the drop in phasing rate, we examined the distance of each variant to its closest neighbor. 
We found that rare variants were typically located farther from their neighbors than 
common variants. Whereas, the average proximity across all SNVs was 684.9 bp in 
sample NA12878, the average proximity for novel SNVs was 3001.9bp. 
 
Next, we tried to explain the drop in accuracy over rare variants. This drop was present at 
the local stage, and therefore was not due to statistical methods. After manually 
examining rare SNPs with switch errors, we concluded that the error increase was 
because these variants were often miscalled: we were able to find a significant number of 
so-called novel positions at which none of ten clouds would contain an SNV. Sometimes 
the genomic region around the novel SNP seemed to show evidence for another event, 
such as a copy number variation.  
 
To investigate this more formally, we computed for each locally phased position j a 
quality score, defined as 

!(!!"|ℎ!"
!:!∈!

), 

where !!" is the allele found on fragment ! at position ! and ℎ!" is the true allele at 
position ! on the haplotype from which fragment ! was deemed to originate. To compute 
such q-scores, one needs to run the local phasing algorithm to determine the most likely 
haplotypes and provenances of the long fragments. 
 
As an example, if the true haplotype in a region was determined to be 01010, and a long 
fragment ! with alleles 111 was deemed to originate from the middle three positions, then 
the probability ! !!! ℎ!! = ! 1 0 , which is the probability of having made a 
sequencing error at that position. 



 
Our local phasing algorithm assumes that all positions are truly heterozygous. Therefore, 
if a SNP call is a false positive, many fragments that cover that positions will have 
associated scores of ! !!" ℎ!" = !(0|1) (probability of observing the reference, given 
that the true allele should be a variant), and the total quality score will be low. 
 
Thus the above score can be taken as a rough indicator of inconsistency between the long 
fragments, and the data reported in the VCF. We compared the average q-score at novel 
SNPs with a switch error to the average q-score at non-novel SNPs with a switch error, 
and found the former to be noticeably lower: 0.3635 versus 0.6523. The average q-score 
across all positions was 0.9328. Within each class, q-scores were either very close to one, 
or very close to zero. Among novel SNPs with switches, 63% were below 0.1, and 36% 
were above 0.9; among non-novel SNPs with switches, 33% were below 0.1, and 65% 
were above 0.9. This again suggests that novel SNPs were in general much less supported 
by long fragment data, and perhaps were not truly SNPs. This in turn offers an 
explanation for their lower accuracy. 
 
 
Additional assessment of concordance between replicate libraries of NA12878 
 
To better assess the concordance of the two replicates of the HapMap sample NA12878, 
we evaluated the switch accuracy of replicate one using replicate two as the ground truth 
set. The two samples displayed very few long switching events relative to each other, 
with the long switch accuracy being equal to 99.9% at the 0.9 confidence score cutoff. 
However, the short switch accuracy between the replicates was equal to 99.3%, which 
was lower than the true short switch accuracy. This suggests that the long-range phase of 
the two replicates is highly concordant, but particular individual positions exhibit 
differences in phase, possibly due to being uncovered by reads in one of the samples. 
 
We further assessed concordance by counting the SNVs that were phased in both samples. 
We found that 98.6% of all SNVs phased in replicate one were also phased in replicate 
two, again suggesting good concordance. 
  



Whole-Genome Bisulfite Sequencing (MethylC-Seq) 
 
Briefly, 5 micrograms of genomic DNA was used for preparation of each Illumina 
library. The genomic DNA was mixed with 25 nanograms of unmethylated Lambda 
DNA (Promega, Madison, WI, USA) as bisulfite conversion control, and sheared with the 
Covaris S2 system (Covaris, Woburn, MA, USA) with the following settings: use 
frequency sweeping; Intensity 4; Duty Cycle 10%; Bursts per Second 200; for a total of 2 
minutes. Fragmented DNA was then concentrated with QIAquick PCR Purification Kit 
(QIAGEN, Hilden, Germany). The ends of the concentrated DNA were first repaired 
with the Epicentre End-ItTM DNA End-Repair Kit (Epicentre/Illumina, Madison, WI, 
USA), and a deoxyadenosine was added to the 3’-end with Klenow 3’->5’ exo- enzyme 
(New England Biolabs, Ipswich, MA, USA), and ligated with Illumina’s Early Access 
Methylation Adapter Oligo (Catalog # ME-100-0010, Illumina, Hayward, CA, USA). 
The ligated libraries were size-selected for an average insert size of 300 bp by agarose gel 
excision and extraction, and underwent bisulfite conversion using the MethylEasyTM 
Xceed Rapid DNA Bisulphite Modification Kit (Human Genetic Signatures Pty Ltd, 
North Ryde, Australia). Bisulfite-converted, adaptor-ligated DNA was then amplified 
with the uracil-tolerating PfuTurbo Cx Hotstart DNA polymerase (Agilent Technologies, 
Santa Clara, CA, USA) using the following program: 95°C 2 min, 98°C 30 sec, 10 cycles 
of (98°C 15 sec, 60°C 30 sec, 72°C 4 min), 72°C 10 min. The final amplified libraries 
were further purified with the Agencourt AMPure XP SPRI beads (Beckman Coulter 
Genomics, Danvers, MA, USA), and subjected to 101b paired-end sequencing using 
Illumina’s HiSeq 2000 Sequencer. 
 

Identification of Allele-specific DNA Methylation at Base Resolution 

To identify genome-wide allele-specific DNA methylation, we performed MethylC-seq 
experiments on the DNA extracted from GM12878 cell line. A total of 796 million (13x 
per strand) uniquely mapped non-identical reads were obtained. The bisulfite conversion 
rates were 99.82%. We used the heterozygous SNPs from the phasing data to determine 
the allele-specific DNA methylation and assigned 48 million reads (6% of total reads) to 
one of the two parental alleles. We determined the allele-specific DNA methylation 
(ASM) using Fisher’s exact test on each of the cytosine that was covered by at least 5 
reads on each allele. A total of 216,034 ASM cytosines passed the significance test. 
About half of ASM events (63.32%) were from direct disruption or forming of CpG 
dinucleotides, which confirmed the accuracy of our method since DNA methylation 
occurs primarily at CpG sites. A total of 100,834 ASM events were left after removing 
the CpG-disrupted ASM sites. DMRs are identified by merging allele-specific methylated 
cytosines on the same allele that are less than 1000 bps apart. Merged genomic regions 
that contain 5 or more allele-specific methylated cytosines are reported as DMRs. All 
genomic coordinates were based on the GRCh37 (hg19) reference genome annotation.  
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Supplementary Material: The global phasing component of
Prism
The global phasing algorithm constructs extremely long contigs from the short local haplotype
blocks produced at a local stage. It takes as input a phased panel of individuals from the Thou-
sand Genomes project [5], and uses linkage disequilibrium (LD) patterns inferred statistically
from this panel to assign the most likely phase to each locally pre-phased block. Whereas tra-
ditional statistical algorithms have relatively low accuracy [1], our method is able to leverage
locally-derived haplotype information to greatly reduce the number of possible haplotypes in
any region, and thus improve phasing accuracy.

Overview
At a high level, our algorithm extends the Li and Stephens [4] model to sequencing data that
comes pre-phased using long reads; existing algorithms based on this model are designed for
microarrays [3, 2] and do not handle such input.

The intuition behind our algorithm is the same as behind ones based on the Li and Stephens
[4] model. Given locally-phased data for which we only partially know the phase, we look for a
way of representing this data as an “imperfect mosaic” of reference haplotypes. In other words
we try to represent the partially-phased data as a combination of a small number of segments,
such that within each segment, there is a reference haplotype that describes the observed data
well. The phase of each block is then chosen to be that which best matches that of the chosen
reference haplotypes.

One can also describe our algorithm in terms of the following generative model. This model
postulates that the locally phased blocks are derived from the reference panel through a tran-
scription process in which at every position, the observed haplotypes are copied from a pair of
reference haplotypes r(0), r(1). At the first position, two imaginary “cursors” are initialized at
a random pair of haplotypes; these cursors begin moving from left to right, starting at the left-
most genomic position j = 0. At every position, the first and the second cursor read the allele
of their haplotypes; these letters become the allele at the first and the second haplotypes at the
corresponding position of the locally-derived block covering that position. At some positions,
however, an error occurrs in the transcription of the allele. With high probability, the cursors
stay on the same reference haplotype. However, with small probability, they occasionally jump
to a different haplotype, at which point it is that haplotype that becomes transcribed. The end
result, is that the locally phased blocks are composed of a patchwork of reference haplotypes
that describe the blocks in some mall segment.

Formally, this generative process corresponds to a hidden Markov model (HMM), where
the r(0), r(1) are the hidden states. We refer the interested reader to [4] for more details on this
approach, and why it is effective at inferring haplotypes. Here, we restrict ourselves to formally
presenting the HMM and how it used to compute the phase of the local blocks.
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Notation
The global HMM is run on chromosome regions several hundreds of kilobases in length. Within
these regions, we only consider positions that are variants either in the subject or in one of the
reference panel samples.

We use m to denote the number of positions in the region, and denote each position by j.
We use 0, 1 to denote the two alleles at that position. The algorithm also assumes the existence
of a panel of K phased haplotypes. We index panel haplotypes by r = 1, ..., K, and we denote
by rj 2 {0, 1} the allele of the member of the panel indexed by r. Our model assumes that data
in this region is pre-phased using non-overlapping local blocks.

Graphical model
Our algorithm is based on the following hidden Markov model. Readers familiar with the
subject will recognize it as an extension of the HMM of Li and Stephens [4].
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2
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The model has four types of variables: h, p, r(0), and r(1). There is an instance of each
type of variable at every position j = 1, ...,m. The variable hj corresponds to the haplotype of
the subject at position j; it takes values in the set {0, 1} ⇥ {0, 1}. Thus at heterozygous SNP
positions, it is either 0|1 or 1|0; at homozygous SNPs it is always 1|1, at reference positions it
is always 0|0. These values are determined at the local stage; thus if two adjacent heterozygous
SNPs were found in local phasing to be on different chromosomes (e.g. two ’1’ alleles on
different parental chromosomes), then their h-variables’ values will be 0|1, 1|0, and not 0|1,
0|1. We denote the left and right alleles by hj(0), hj(1), respectively.
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The r(0)j and r(1)j are indices of two reference panel haplotypes that describe the subject at
position j. Each describe one chromosome of the subject. Finally, the pj variable denotes the
phase of the block that contains the SNP at position j; its value is in {0, 1}.

At every position, the emission probability equals

P (hj|pj, r(0)j , r(1)j ) =

(
P (hj(0)|r(0)j )P (hj(1)|r(1)j ) if pj = 0

P (hj(0)|r(1)j )P (hj(1)|r(0)j ) if pj = 1,

where each term P (a|r(0)j ) is of the form

P (a|r(0)j ) =

(
1� � if a = R(r(0)j )

� if a 6= R(r(0)j ).

In the above equation, the variable � is set as in the Li and Stephens model to � = ✓/(2(K + ✓)),

with ✓ =

⇣PK�1

k=1

1

k

⌘�1

. Essentially, we observe the alleles of the reference panel haplotypes
with a small probability of error. We refer the reader to [4] for the biological intuition behind
the choice of these parameters.

The transition probabilities between the r-variables are also of the same form as in the Li
and Stephens model:

P (rj|rj�1

) =

(
exp(�⇢j/K) + (1� exp(�⇢j/K)

K ) if rj = rj�1

exp(�⇢j/K)

K if rj 6= rj�1

.

The parameter ⇢j equals 4Nedj , where Ne is the effective population size parameter (set to
15,000) in our algorithm, and dj is the genetic distance between markers j and j � 1. This data
is obtained from a genetic map that is an input to our algorithm. We again refer the reader to [4]
for an explanation of the precise form of these equations, but the intuition is that at each step,
the hidden state typically doesn’t stage, except for a small probability of jumping to a different
member of the reference panel.

The transition probabilities between adjacent pj variables are uniform if SNPs j, j � 1 are
in different blocks; otherwise, pj and pj�1

are equal with probability one.

P (pj|pj�1

) =

8
><

>:

1

2

if positions j and j
1

are in different locally phased blocks
1 if positions j and j

1

are in the same locally phased block and pj = pj�1

0 if positions j and j
1

are in the same locally phased block and pj 6= pj�1

These transition probabilities enforce the locally-phased structure at the global phasing level.
Finally, the initial probabilities of the HMM are uniform.
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Global phasing using the HMM
The above graphical model defines a probability distribution P (locally phased data, p

1:m, r
(0)

1:m, r
(1)

1:m).
To infer the statistically most likely phase of the local blocks, we solve the following optimiza-
tion problem:

max

p1:m,r
(0)
1:m,r

(1)
1:m

P (locally phased data, p
1:m, r

(0)

1:m, r
(1)

1:m).

This problem can be solved efficiently using the Viterbi algorithm. Its solution is an optimal
phase assignment to blocks p⇤

1:m, and an optimal Viterbi path through the space of reference
haplotypes (r(0),⇤

1:m , r(1),⇤
1:m ).

In addition to finding the optimal phase, we also derive confidence scores from the forwards-
backwards HMM probabilities using calculations that are typical for Hidden Markov Models.
The most important score we use is the transition probability P (pj|pj�1

, h
0:m). We use these

scores to introduce breaks in our global haplotype contigs.
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